
An Infinite Hidden Markov Model with Stochastic
Volatility∗

Chenxing Li† John M. Maheu‡ Qiao Yang§

February 2024

Abstract

This paper extends the Bayesian semiparametric stochastic volatility (SV-DPM)
model of Jensen and Maheu (2010). Instead of using a Dirichlet process mixture (DPM)
to model return innovations, we use an infinite hidden Markov model (IHMM). This
allows for time variation in the return density beyond that attributed to parametric
latent volatility. The new model nests several special cases as well as the SV-DPM.
We also discuss posterior and predictive density simulation methods for the model.
Applied to equity returns, foreign exchange rates, oil price growth and industrial pro-
duction growth, the new model improves density forecasts, compared to the SV-DPM,
a stochastic volatility with Student-t innovations and other fat-tailed volatility models.

Keywords: stochastic volatility; Markov-switching; MCMC; Bayesian; nonparametric; semi-
parametric

JEL codes: C58; C14; C32; C11; C34

∗We are grateful for the helpful comments from an anonymous referee, seminar participants at the 2018
RECA Bayesian Econometric workshop, 2020 SBIES, Tongji University, Hunan University, 2021 CFE, 2021
China Meeting of Econometrics Society, 2022 China Forum of Bayesian Econometrics, 2023 TinySoft Annual
Meeting, 2023 BigData Econometrics Seminar (Time-Varying Modelling). Li thanks the Social Science
Foundation of Hunan Province (Project 23YBA031). Maheu thanks the SSHRC of Canada for their financial
support. Yang thanks the ShanghaiTech Start-up fund and the Young Scientists Fund of NSFC (Project
72103137) for their financial support.

†Center for Economics, Finance and Management Studies, Hunan University.
Email:lichenxing@hnu.edu.cn

‡DeGroote School of Business, McMaster University. Email:maheujm@mcmaster.ca
§Corresponding author: School of Entrepreneurship and Management, ShanghaiTech University, China.

Email: yangqiao@shanghaitech.edu.cn

1



1 Introduction
Changing volatility has become ubiquitous in economic time-series data. Besides high fre-
quency asset returns, conditional heteroskedasticity is even found in lower frequency macroe-
conomic aggregate data (Primiceri, 2005; Cogley and Sargent, 2005; Clark, 2011; Clark and
Ravazzolo, 2015; Chan, 2013, 2017; Marcellino et al., 2016; Diebold et al., 2017; Carriero et al.,
2019). Popular approaches for capturing volatility dynamics include Generalized Autoregres-
sive Conditional Heteroskedasticity (GARCH, Bollerslev, 1986) and Stochastic Volatility (SV,
Taylor, 1982). However, less attention has been given to modeling the unknown innovation
distribution.

Flexible modeling of return innovations, coupled with parametric volatility models, can be
found in the work of Jensen and Maheu (2010), Delatola and Griffin (2011, 2013), Kalli et al.
(2013), and Liu (2021). Although flexible, these approaches assume a constant underlying
innovation distribution over time. While volatility changes in the parametric portion of the
model, the underlying return distribution remains fixed over time.

This paper explores an SV parametric specification coupled with an infinite hidden
Markov component that governs a mixture of normals. This is a direct extension of Jensen
and Maheu (2010), replacing the Dirichlet process mixture (DPM) with a Markov mixture
model. The Markov chain allows the weights on the mixture to change over time, providing
the potential to capture changing conditional skewness, kurtosis, and tail dynamics beyond
what the SV component can account for.

The infinite hidden Markov model (IHMM) has been fruitfully used in various settings,
including GARCH modeling (Dufays, 2016; Shi and Song, 2016), inflation dynamics (Song,
2014; Jochmann, 2015), short-term interest rates (Maheu and Yang, 2016), realized covariance
models (Jin and Maheu, 2016; Jin et al., 2019), macroeconomic forecasting (Hou, 2017; Yang,
2019), and model combination (Jin et al., 2022).

Like the DPM, the IHMM approximates the unknown conditional return distribution non-
parametrically with a countably infinite mixture of distributions. Unlike the DPM model,
the mixture weights in the IHMM are Markovian. The prior on this Markov chain is con-
structed using two layers of nested Dirichlet processes referred to as a hierarchical Dirichlet
process (Teh et al., 2006). The IHMM can be seen as a regime-switching model with an infi-
nite number of states. In each period, the return distribution is approximated by an infinite
mixture, and the mixture weights depend on the previous state the system is in. In contrast,
the DPM approximates the unknown distribution with an infinite mixture, but the weights
are constant and independent of the previous states.

Due to the unbounded state space, the IHMM can accommodate both structural breaks
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and recurrent changes in a unified framework. However, a regime-switching model may not
capture the strong persistence in volatility dynamics (Ryden et al., 1998). Our model’s SV
component captures this, allowing the IHMM component to focus on transitory changes in
the shape of the unknown distributions.

Our infinite hidden Markov model with stochastic volatility (SV-IHMM) is related to
Virbickaitė and Lopes (2019), which has a two-state Markov-switching process affecting the
conditional mean of log-volatility, while log-squared returns are nonparametrically modeled.
The SV-IHMM allows unbounded states for the conditional mean of log-volatility but non-
parametrically models return innovations without losing the sign information of returns.
Related work that includes discrete parameter changes in volatility modeling includes Ma-
heu and McCurdy (2000), Calvet and Fisher (2004), Griffin and Steel (2011), and Bauwens
et al. (2014).

Estimation relies on Markov Chain Monte Carlo (MCMC) methods. Posterior simulation
for the IHMM component comes from Teh et al. (2006) and Maheu and Yang (2016), while
the latent stochastic volatility is simulated with the random block sampler of Jensen and
Maheu (2010). We apply the model to various asset classes and compare it with a number
of strong benchmark models, including the SV-DPM from Jensen and Maheu (2010) and
the SV model with Student-t innovations. While the SV component captures movements
displaying strong persistence in volatility, the variance component directed from the IHMM
portion can be thought of as capturing transitory changes in volatility that could be labeled
as jumps. In all applications, we find significant evidence of parameter change.

Evaluating forecasts through the predictive likelihood shows that the SV-IHMM is pre-
ferred to or equally as good as all other benchmarks. Alternative density forecasts, probability
integral transformation and asymmetric continuous probability score, consistently validate
these findings. Predictive density plots indicate that the SV-IHMM tends to produce distri-
butions with the fattest tails when necessary. Comparison of tail forecasts, in the form of
value-at-risk and expected shortfall, confirms our model’s superior performance.

This paper is organized as follows. Section 2 illustrates the specification of the proposed
SV-IHMM, along with the sampling algorithm and density forecast computation. Section 3
lists the benchmark models for comparison. Section 4 extensively investigates the model’s
empirical performance with real-world data. Section 5 concludes. An Appendix details the
posterior simulation methods used for our model, some benchmark specifications, and steps
of some forecast measurements computation.
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2 SV-IHMM

2.1 Model Specification

Our proposed SV-IHMM model combines a parametric SV component with a Bayesian non-
parametric component based on an infinite hidden Markov model (IHMM). The IHMM is
constructed using the hierarchical Dirichlet process (HDP) introduced by Teh et al. (2006).
Let rt denote log-returns and ht log-volatility; then the hierarchical representation of the
SV-IHMM is given by1

Γ ∼ Stick(η), Πj
iid∼ Stick2(α,Γ), j = 1, . . . ,∞, (1a)

st|st−1 ∼ Πst−1 , (1b)
rt|st, ht, θ ∼ N(µst , ω

2
st exp(ht)), (1c)

ht|ht−1 ∼ N(ϕht−1, σ
2
v), (1d)

θj
iid∼ H, j = 1, . . . ,∞, (1e)

where θst = {µst , ωst}, and θ = {θ1, θ2, ...} is the collection of state-dependent parameter
vectors generated from the base measure H. The state variable st ∈ {1, . . . ,∞} is governed
by a first-order Markov chain of infinite dimension with transition matrix Π. The stick-
breaking representations Stick(η) and Stick2(α,Γ) are employed for the Dirichlet processes
(Sethuraman, 1994; Teh et al., 2006). Let Γ = {γ1, . . . , γ∞}. The distribution Γ ∼ Stick(η)

denotes a discrete distribution with weights generated as

γj = vj

j−1∏
l=1

(1− vl), vj
iid∼ Beta(1, η), j = 1, 2, 3, . . . , (2)

where Γ serves as a centring distribution. Each row of Π is drawn from Πj ∼ Stick2(α,Γ).
The weights in the distribution of Πj are generated as

πji = π̂ji

i−1∏
l=1

(1− π̂jl), π̂ji
iid∼ Beta(αγi, α(1−

i∑
l=1

γl)), (3)

where πji represents the probability of transitioning from parameter θj to parameter θi.
The parameters η and α act as concentration parameters governing the likelihood of new

states occurring when the model is applied to a finite dataset. The two Dirichlet processes

1We omit state dependence for ϕ and σ2
v here, as empirical evidence did not support this specification.
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(DPs) in (1a) are linked by sharing the same atom θ. This implies that each draw of Πj has
the same support, facilitating the construction of an infinite transition matrix that governs
st. The top-level hierarchy is determined by Stick(η) and is shared in the second level. The
second layer, Stick2(α,Γ), governs each row of the transition matrix and is centred such
that E[Πj] = Γ. The Infinite Hidden Markov Model (IHMM) nests the Dirichlet Process
Mixture (DPM) model of Antoniak (1974) when α → ∞, and each row of the transition
matrix converges to the same vector Γ. The associated stick-breaking representation of the
model is given by:

p(rt|θ,Π, st−1, ht) =
∞∑
k=1

πst−1kN(rt;µk, ω
2
k exp(ht)), (4a)

ht = ϕht−1+σvvt, vt ∼ N(0, 1), (4b)

where N(rt;µk, ω
2
k exp(ht)) denotes the normal density function with mean µk and variance

ω2
k exp(ht) evaluated at rt. The weight assignments πst−1k follow a first-order Markov chain,

influencing the weights assigned to different normal kernels over time. The model in (4)
aligns with the SV-DPM specification of Jensen and Maheu (2010) when the weights are
independent of the previous state, i.e., πjk = πk for all j and k.

Similar to conventional SV models, the conditional mean in the SV-IHMM includes the
lag term ϕht−1. However, the SV-IHMM introduces a second channel affecting volatility
through the Markov chain and the variance component ωst . The parameter ω2

st controls
changes in the log-volatility of returns. This is evident when rewriting the model as:

rt = µst + exp(h
′
t/2)zt, zt ∼ N(0, 1) (5a)

h
′
t − logω2

st = ϕ(h
′
t−1 − logω2

st−1
) + σvvt, (5b)

where h
′
t = ht + log ω2

st . The conditional mean of h
′
t captures both transitory jumps and

permanent changes in log-volatility, depending on the state process. State changes allow for
variations in both the conditional and unconditional mean of h′

t over time through ω2
st .

Although not modeled parametrically, leverage or asymmetric volatility effects, where
price changes lead to volatility changes in the next period, can be captured nonparametrically.
For instance, a state move resulting in a low µst this period and a high ω2

st+1
next period

will capture this relationship. Modeling this nonparametrically allows for a more general
representation and accommodates changes in this relationship over time.

Finally, one may argue for extending the model to allow ϕ and σ2
ν to be state-dependent.

We estimated this for our empirical application and found little evidence of time variation in
these parameters. As such, we focus on the simpler specification above.
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2.2 Priors and Hierarchical Priors

This subsection defines the priors and hierarchical priors for the SV-IHMM. The priors for
the infinite Markov transition matrix Π are formed by Stick(η) and Stick2(α,Γ), which were
discussed in previous section. In order to minimize the impact of the prior, rather than fixing
η and α, we follow Fox et al. (2011) and impose the following hyper prior:

η ∼ Gamma(2, 8), α ∼ Gamma(2, 8), E(η) = E(α) = 0.25. (6)

H is the common base measure of the second layer of the DPs in the model. This prior is
specified as µj ∼ N(b0, B0) and ω2

j ∼ IG(ν0, s0). Motivated by Song (2014), a hierarchical
prior is used to learn from the data about these prior settings. These are

b0 ∼ N(0, 1), B0 ∼ IW(3, I), v0 ∼ Exp(1), s0 ∼ Gamma(5, 1), (7)

where I is an identity matrix and B0 ∼ IW(4, I) if the conditional mean is an AR(1) process.
When a new state is introduced to the model, the associated draws of a new µ and ω are
obtained from the informative priors that were influenced by the data. This can contribute
to faster learning about the new states and, thus, improve the forecasts.2 ϕ ∼ N(0, 1) is
truncated to the stationary region for an AR(1) process and σ2

v ∼ IG(11, 0.01).3

2.3 Posterior Sampling

The sampling scheme for the SV-IHMM consists of two parts. First, we sample the state-
dependent parameters, transition matrix, latent states and the concentration parameters of
the HDP. Second, we sample the log-volatility.

Conditional on the log-volatility, the sampling algorithm for the state-dependent pa-
rameters is similar to that of the IHMM. We use the beam sampler from Van Gael et al.
(2008). This randomly generates the auxiliary variables (slices) that stochastically truncate
the infinitely dimensional transition matrix Π into a finite size so that the forward-filtering
backward-sampling (FFBS) an be applied (Chib, 1996).

We define an auxiliary variable ut > 0 (slice) that is generated by a uniform density as
follows:

p(ut|st, st−1,Π, ) =
1(ut < πst−1,st)

πst−1,st

t = 1, . . . , T, (8)

where 1(·) denotes the indicator function. Augmenting the model with ut gives us the
2Maheu and Yang (2016) documents significant improvements in the density forecast accuracy.
3We apply a very informative prior to separately identify the SV and IHMM components. A prior of

σ2
v ∼ IG(5, 0.25) provides similar forecast results.
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following target density:

p(rt, ut|θ,Π, st−1, ht) =
∞∑
k=1

1(ut > πst−1k)N(rt;µk, ω
2
k exp(ht)). (9a)

Integrating out the slice yields (4a), but given ut there are now a finite number of non-zero
terms 1(ut > πst−1k) that we need to account for. This is easily found by defining K to
satisfy maxi∈{1,...,K}{1−

∑K
j=1 πi,j} < mint∈{1,...,T}{ut}. Then j = 1, . . . , K cover all non-zero

terms 1(ut > πst−1k).
Now, sampling the states and the state-dependent parameters is done on a finite Markov

switching model. In each iteration of the posterior sample, K will change.
The FFBS within the Beam sampler is applied in the following way:

• The prediction step for k = 1, . . . , K calculates as

p(st = k|u1:T ,Π, r1:t−1) ∝
K∑
j=1

1(ut < πj,k)p(st−1 = j|u1:T ,Π, r1:t−1, ht). (10)

• The update step for k = 1, . . . , K calculates as

p(st = k|u1:T ,Π, r1:t) ∝ p(st = k|u1:T ,Π, r1:t−1)p(rt|r1:t−1, µk, ωk, ht). (11)

After s1:T are sampled, we update K by excluding the states for which there are no observation
assignment. The slices are drawn from the uniform distribution.

To sample ht, a random length block-move Metropolis-Hastings (MH) sampler of Jensen
and Maheu (2010) is used. The block size of this sampler is randomly drawn from a Poisson
distribution with preset hyperparameter λh, and the expected block size is λh + 1. Once ht

is sampled, θ and σv can be easily sampled via conjugacy. c1:K represents the oracle counts
that help us sample α and η. All of the posterior steps are summarized in the following:

p(u1:T |s1:T ,Π) p(s1:T |Π, u1:T , r1:T , h1:T , θ) p(c1:K |s1:T ,Γ, α)

p(Γ|s1:T , η, α, c1:K) p(Π|s1:T ,Γ, α, c1:K) p(µ1:K , ω1:K |r1:T , s1:T )

p(α, η|s1:T , c1:K) p(h1:T |r1:T , θ) p(ϕ, σ2
v |h1:T )

p(b0, B0, v0, s0|µ1:K , ω1:K)

Appendix A.4 describes the details of each sampling step. Let Θ = {s1:T , u1:T ,Π, α, η, c1:K , µ1:K ,

ω1:K , ϕ, σv, h1:T , b0, B0, v0, s0}. Sampling each of the conditional posterior distributions pro-
vides one iteration of the sampler and MCMC theory ensures these draws converge to a
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sample from the desired posterior density, p(Θ|r1:T ). After dropping the burn-in draws, the
sample average of g(Θ(i)) provides a simulation consistent estimate of the posterior moment,
E[g(Θ)|r1:T ], for some function of interest g(·). For example, given N MCMC draws,

E(µst |r1:T ) ≈
1

N

N∑
i=1

µ
(i)

s
(i)
t

, for t = 1, . . . , T, (13)

is the posterior mean estimate of µst at each point in time.

2.4 Out-of-Sample Forecasts

This subsection describes the simulation details to compute forecasts. The predictive distri-
bution of the returns integrates out all of the parameter uncertainty and has the following
generic form:

p(rt+1|r1:t) =
∫

p(rt+1|Θ, r1:t)p(Θ|r1:t)dΘ, (14)

where p(rt+1|Θ, r1:t) is the density of rt+1, given the parameter set Θ and the past returns.
p(Θ|r1:t) is the posterior density of Θ, given the data. Any feature of the predictive density,
such as the predictive mean, can be obtained through simulation methods.

A central component in a Bayesian model comparison is the predictive likelihood. This
is obtained for a model by evaluating the predictive density at the realized data point rt+1.
The predictive likelihood measures the accuracy of the density forecasts, with larger values
being better.

To compute the log-predictive likelihood (LPL) for the SV-IHMM, we do the following:
Given the posterior draws from each iteration of the MCMC sampler {Θ(i)}Ni=1, we draw
s
(i)
t+1 ∈ {1, . . . , K(i) + 1}, where K(i) is the total number of active states:

1. Simulate the state variable s
(i)
t+1 through Π

(i)

s
(i)
t

, conditional on s
(i)
t .

2. If s(i)t+1 ≤ K(i), then rt+1 is assigned to an existing state, with state-dependent parameter
θ
s
(i)
t+1

= (µ
(i)

s
(i)
t+1

, ω
(i)

s
(i)
t+1

). Otherwise, rt+1 is assigned to a new state, s(i)t+1 = K(i) +1, where

(µ
(i)

s
(i)
t+1

, ω
(i)

s
(i)
t+1

) is drawn from the hierarchical prior, µ
s
(i)
t+1

∼ N(b
(i)
0 , B

(i)
0 ) and ω2

s
(i)
t+1

∼

IG(ν
(i)
0 , s

(i)
0 ).

The predictive likelihood estimate at t+ 1 is computed over all MCMC draws:

p(rt+1|r1:t) ≈
1

N

N∑
i=1

p(rt+1|µ(i)

s
(i)
t+1

, ω
(i)2

s
(i)
t+1

exp(h
(i)
t+1)), (15)
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where p(rt+1|µ(i)

s
(i)
t+1

, ω
(i)2

s
(i)
t+1

exp(h
(i)
t+1)) denotes the normal density evaluated at rt+1 with mean

µ
(i)

s
(i)
t+1

and variance ω
(i)2

s
(i)
t+1

exp(h
(i)
t+1). h

(i)
t+1 is obtained by simulating forward a value from the

existing MCMC draw h
(i)
t+1 ∼ N(ϕ(i)h

(i)
t , σ

(i)2
v ).

Equation (15) measures the predictive likelihood of forecast accuracy at period t+1. The
forecast performance over the entire out-of-sample period, t0, . . . , t1 and t0 ≤ t1, is determined
by computing the joint predictive likelihood of model MA in the following way:

LPLA = log p(rt0:t1 |r1:t0 ,MA) =

t1∑
t=t0

log p(rt|r1:t−1,MA) (16)

Two models, MA and MB, can be compared with a log-predictive Bayes factor (BF)
defined as BFAB = LPLA−LPLB. Positive values favour MA. Values above 5 are regarded
as strong evidence for MA.

The root mean squared forecast error (RMSFE) for MA is computed in a similar way:

RMSFE =

√∑t1
t=t0

(rt − E(rt | r1:t−1,MA))2

t1 − t0 + 1
, (17)

where E(rt|r1:t−1,MA) is the predictive mean for rt given data r1:t−1. For each out-of-sample
period, we re-estimate the model to compute the predictive quantities.

To further evaluate the model forecasts we compute the value-at-risk for quantile q along
with the expected shortfall by simulating from the predictive density. To compare models
we report the scoring rule of Taylor (2019). Let V aRq

t+1 and ESq
t+1 denote the value-at-

risk and expected shortfall for a model using information r1:t at percentile q. We simu-
late from the predictive distribution by adding a third step above that simulates r

(i)
t+1 ∼

N(µ
(i)

s
(i)
t+1

, ω
(i)2

s
(i)
t+1

exp(h
(i)
t+1)). From these draws we numerically estimate the V aRq

t+1 and ESq
t+1

accordingly. The scoring function is

L(rr+1, V aRq
t+1, ESq

t+1) = − ln
( 1− q

ESq
t+1

)
−
(rt+1 − V aRq

t+1)
[
q − 1(rt+1 < V aRq

t+1)
]

qESq
T+1

+
rt+1

ESq
t+1

.

The average score, TS(q), is measured over entire out-of-sample period in the following way,

TS(q) =

∑t1
t=t0

L(rr+1, V aRq
t+1, ESq

t+1)

t1 − t0 + 1
, (18)

with models producing smaller values being preferred.
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3 Benchmark Models
We consider the following benchmark models for comparison. The GARCH-N is defined as

rt = µ+ σtϵt, ϵt ∼ N(0, 1), σ2
t = β0 + β1(rt−1 − µ)2 + β2σ

2
t−1. (19)

The GARCH-t replaces the normal distribution with a Student-t distribution:

rr = µ+ σtut, ut ∼ t(ν), σ2
t = β0 + β1(rt−1 − µ)2 + β2σ

2
t−1, (20)

where t(ν) denotes a Student-t distribution with mean 0, scale parameter 1 and degree of
freedom ν.

The SV parametric versions, including the SV-N, are defined as

rt = µ+ exp (ht/2) ϵt, ϵ ∼ N(0, 1), ht = ξ + ϕht−1 + σvvt. (21)

Similarly, SV-t has the following Student-t return innovations:

rt = µ+ exp (ht/2) ut, ut ∼ t(ν), ht = ξ + ϕht−1 + σvvt. (22)

The SV-IHMM nests several models of interest that we can compare our model to. The
first is an IHMM without the SV component. If σv = 0, and ht = 0, ∀t in the SV-IHMM
then we have the following IHMM:

Γ ∼ Stick(η), Πj
iid∼Stick2(α,Γ), j = 1, . . . ,∞, (23a)

st|st−1 ∼Πst−1 , (23b)
rt|st, ht, θ ∼N(µst , ω

2
st), (23c)

θj
iid∼H, j = 1, . . . ,∞, (23d)

As mentioned above, the infinite hidden Markov chain nests the DPM as a special case and,
therefore, the SV-IHMM nests the SV-DPM of Jensen and Maheu (2010). The SV-DPM
model is obtained by replacing the first two lines in (1a)–(1b) with

Γ ∼Stick(η), (24a)
st ∼Γ, t = 1, . . . , T. (24b)

Finally, since the SV-IHMM nests the SV-DPM, it also nests the SV-t under certain param-
eter restrictions and prior assumptions.

10



The model by Amado and Terasvirta (2013), is a multiplicative time-varying GJR-
GARCH-N that decomposes volatility to a GJR-GARCH-N specification and a multiplicative
time-varying component. According to Amado and Terasvirta (2013), the TV-GJR-GARCH-
N model is written as,

rt = µ+ et, et = σ2
t gtϵt, ϵt ∼ N(0, 1), (25a)

σ2
t = β0 + β1e

2
t−1 + β2σ

2
t−1 + β3e

2
t−1I(et−1 < 0), (25b)

gt = gt(t/T, γ,c1:K) =
r∑

l=1

δlGl(t/T, γ, cl,1:K), (25c)

Gl(t/T, γ, cl,1:K) =
(
1 + exp{−γ

K∏
k=1

(t/T − clk)}
)−1

. (25d)

The gt(·) is a time-varying deterministic function with δl > 0, γ > 0 and c1 ≤ c2 ≤ · · · ≤ cK .
The choice of r = 1 and K = 2 are preselected and suggested by Amado and Terasvirta
(2013) as the optimal choice.4 The extended model labelled as TV-GJR-GARCH-t replaces
the normal innovations with Student-t in equation (25a). Posterior simulation steps follow
the GARCH model and details are discussed on the Appendix A.6.

The multifractal volatility of Calvet and Fisher (2004) decomposes the volatility into sev-
eral latent multiplicative components, each multinomially distributed. Their model, labelled
as MMV-K, is.

rt = µ+ ωet, et ∼ N(0, σ2
t ) (26a)

σ2
t = M1t ·M2t · · ·MKt (26b)

Mkt ∼


α with probability 1

2
γk

2− α with probability 1
2
γk

Mkt−1 with probability 1− γk

(26c)

γk = 1− (1− γ1)
bk−1

, (26d)

with γ1 ∈ (0, 1) and b ∈ (1,∞).5 The σ2
t is a joint multiplication of K multipliers and each

multiplier is either α or 2−α. The number of multipliers K is preset and denoted as MMV-K
in the paper. Given the K and two choices for each multiple (α and 2−α), there is a total of
d = 2K combinations. As suggested by Calvet and Fisher (2004), the model can be written as
a Markov-switching model and as such estimation follows Chib (1996) to sample the latent

4We also tried r = 1 and K = 1 ranked as the second best in Amado and Terasvirta (2013). The
alternative choice does not display better forecast performance.

5γ1 is sampled and γ2:K are deterministic given γ1 and b.
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states. The rest of the parameters (γ1, b, α) are sampled conditioned on the latent state
sequences via a single-move random-walk Metropolis-Hastings step.6

The last benchmark, denoted as RW, corresponds to a random-walk with drift for log
prices and log levels, which is equivalent to a simple model with constant mean and variance
for returns and growth rates:

rt = µ+ σ2ϵt, ϵt ∼ N(0, 1). (27)

As discussed in the beginning of Section 4.2, for certain data set, adding a lag term to the
above model essentially makes it an AR(1) model.

The prior and the hierarchical prior of the IHMM are the same as that of the SV-
IHMM. For the SV-DPM, we keep the same priors, hyper-priors and hierarchical priors
as in SV-IHMM. The key difference is that there is only one concentration parameter, η ∼
Gamma(2, 8), in the SV-DPM. Let µ, β0, β1, β2 follow an independent N(0, 1) in GARCH-N
and GARCH-t. Similarly, µ, ξ, ρ follow an independent N(0, 1) and σ2

v ∼ IG(11, 0.01) in
both the SV-N and SV-t. The prior for ν in the Student-t is uniform: ν ∼ U[2, 50] which
applies to all model using student-t distribution. For the TV-GJR-GARCH-N model, µ, β0,
β1, β2 and β3 follow independent N(0, 1). The other parameters, δ1, γ, c1:2 follow truncated
N(0, 1) with the restrictions such that δ1 > 0, γ > 0 and c1 ≤ c2. For the MMV-K model,
γ1 ∼ Beta(2, 2), α ∼ U[0, 1], ω−2 ∼ Gamma(5, 1). There is no need to sample γ2:K as they
are deterministic conditioned on γ1 and b. Priors setting of RW follows the GARCH-N.

4 Empirical Results

4.1 Data

Four time series datasets are studied using the SV-IHMM and the benchmark models. These
datasets cover three assets from equity, commodity, and foreign exchange markets and a
macroeconomic indicator. We select Apple Inc. (AAPL) as a large cap equity and use its
common stock returns at daily frequencies, dated from December 15th, 1980 to December 31,
2020, and obtain a sample size of 10,099, which we retrieved from the CRSP.7 For the foreign
exchange rate, we study the daily exchange rates of the Canada-US dollar for the period
January 5th, 1971, to December 31, 2020 (12,057 observations), which we obtained from

6Calvet and Fisher (2004) indicate the MMV-K is ultimately a Markov switching model with state
dimension of 2K . The calculation of Markov transition probability is suggested by Calvet and Fisher (2004)
and referred to Appendix A.7.

7Center for Research in Security Prices.
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the FRED.8 West Texas Intermediate (WTI) crude oil spot free on board (FOB) prices are
selected for our commodity prices and run from January 2, 1986 to December 31, 2020. There
are 8,819 daily observations and these are downloaded from the U.S. Energy Information
Administration. The U.S. industrial production index is downloaded from FRED and is a
monthly measure of real output. There are 1,222 observations, dating from March, 1919 to
December, 2020. All of the time series are transformed into rates of change by taking the
log difference and scaling it by 100. The data series are labelled AAPL, USD/CAD, Crude
Oil, and IP Growth, respectively. Table 1 illustrates some descriptive statistics of the data.
AAPL and Crude Oil have greater volatility and skewness than USD/CAD and IP Growth.

4.2 Posterior Analysis

Table 2 provides a summary of the posterior parameter estimates for the most competitive
models: SV-IHMM, SV-DPM, SV-t, and GARCH-t, across the four datasets. The table
reports posterior means and 0.95 density interval estimates. The MCMC draws include a
burn-in of 20,000, followed by an additional N = 20, 000 draws for posterior inference. In
the case of IP Growth, parametric models include an AR(1) term with a fixed coefficient
in the conditional mean, denoted as ρ in the table.9 In nonparametric models (SV-IHMM,
SV-DPM, and IHMM), ρ is state-dependent along with the intercept.

The introduction of a second dynamic structure on volatility through ω2
st does not weaken

the volatility persistence of ht. For instance, ϕ ranges from 0.993 to 0.999 for all models.
Regarding the nonparametric components, the SV-IHMM model employs more active states
than SV-DPM in AAPL and USD/CAD applications, while it shows similar behavior in
Crude Oil and IP Growth (see Table 2).10

Estimates for SV-t and GARCH-t are typical, with a small degree of freedom in the t-
distribution and strong persistence measures of ϕ and β1 + β2 in volatility. An exception is
observed in the SV-t applied to IP Growth, where the degree of freedom is larger than in
other applications. In this case, fat tails are generated through the log-volatility, which has
a much larger σ2

v than the other datasets.
Figure 1 illustrates the posterior mean of the variance components for the SV-IHMM

model applied to AAPL for the period 2012 to 2020. As discussed earlier, the ht process
captures smooth changes in volatility, while deviations are controlled by ωst , capturing short-
term changes that are more transitory in nature than ht, showed in the bottom plot. This

8Federal Reserve Economic Data, U.S. Federal Reserve Bank of St. Louis.
9See Maheu et al. (2020) for the importance of a lag of IP growth for forecasting.

10However, caution is warranted in drawing concrete conclusions from the K estimates, as it is not a
consistent estimator of the number of components (Miller and Harrison, 2013).
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allows for a volatility shock with little to no persistence, where abrupt breaks are captured
by ωst and we avoid the problem that is common to standard GARCH and SV models, in
which the effects of large volatility shocks last too long (Mikosch and Stărică, 2004; Stărică
and Granger, 2005).

Figure 2 and 3 present a heatmap for the states used in USD/CAD and IP Growth
applications. The heatmap displays a T × T matrix of p(si = sj|r1:T ), where colors closer to
red (yellow) indicate probabilities closer to one (zero). Frequent recurrent states are evident
in USD/CAD over the entire sample, and for IP growth, clear evidence of past states from
1920s and 1960s are used to capture the Great Moderation in the early 1980s.

Figure 4 and 5 display the posterior mean of selected state-dependent parameters (e.g.,
E[µst |r1:T ]) for USD/CAD and IP Growth applications. A 0.95 density interval is included
along with colors indicating the most likely parameter at each point in time. ω2

st captures
transitory changes, such as the COVID-19 shock in early 2020, with a spike in ω2

st as shown
in the figures. In contrast, the persistent volatility component, exp(ht), remains relatively
stable.

Estimates of conditional skewness and kurtosis at each point in the sample from the pos-
terior predictive density are displayed in Figure 6 for the SV-IHMM. Considerable variation
is observed due to mixture component weights changing over time and stochastic volatility.

4.3 Density, Point, and Tail Forecasts

We conduct recursive one-period-ahead out-of-sample forecasts using each of the models, mea-
suring predictive performance through three metrics. We report the log-predictive likelihood
(LPL), assessing the accuracy of the entire predictive distribution. The second root-mean-
squared forecast error (RMSFE) of the predictive mean is the second measure. The third is
the scoring rule by Taylor (2019), evaluating forecast accuracy for value-at-risk and expected
shortfall.

Table 3 presents the LPL, the log-Bayes factor in favor of the SV-IHMM against bench-
marks, and RMSFE for the four datasets. Table 4 compares the tail forecast performance of
SV-IHMM and benchmarks. The out-of-sample period covers 8,823 observations for AAPL,
10,856 for USD/CAD, 7,543 for Crude Oil, and 1,164 for IP Growth, having approximately
five years as training sample in the dataset. Each model is re-estimated in each out-of-sample
period.

There are several noteworthy observations. Firstly, the SV-IHMM consistently outper-
forms all benchmark models, delivering superior density forecasts. The positive log-Bayes
factor against all competitors further underscores its overall forecast excellence, with the ex-
ception of the IP Growth case, where TV-GJR-GARCH-t performs equally well. Secondly,
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the SV-DPM emerges as the second-best model, consistently outpacing or at least marginally
matching the performance of SV-t. This finding emphasizes the robust predictive power of
the SV-DPM specification. Thirdly, the TV-GJR-GARCH-t model distinguishes itself as
a formidable competitor, owing to its use of Student-t innovation. Interestingly, it even
achieves a marginal superiority over SV-IHMM in the IP Growth scenario, as indicated by a
Bayes factor of 0.45. The preference for the fat tails of SV-t over SV-N is consistent, docu-
mented not only in GARCH but also in TV-GJR-GARCH-N, except for IP Growth, where
both models exhibit comparable predictive capabilities. Despite SV-N producing fat tails in
the predictive density, the generally small degree of freedom parameter estimates in the SV-t
model (refer to Table 2) suggest its insufficiency. Notably, both SV-DPM and SV-IHMM
adeptly capture non-Gaussian fat tails through a discrete mixture of distributions.

Some insight into model performance is evident in Figure 7, which illustrates the cumu-
lative log-Bayes factor between the SV-IHMM and other top-performing benchmark models
at each point in time.11 If the curve is sloping upward (downward), it indicates that the
SV-IHMM performs better (worse) in accounting for the associated realized data at time
t. Overall, each plot either shows gradually increasing log-Bayes factors in favor of the SV-
IHMM or generally flat portions where the SV-IHMM is equal to the benchmark. Few periods
exhibit spikes in favor of SV-IHMM or benchmarks. However, none of the final log-Bayes
factors are driven by a few influential outliers; instead, they stem from consistent gains over
the out-of-sample period. The SV-IHMM may take some time to demonstrate improvements
over the SV-DPM in the case of Crude Oil and IP Growth, likely due to the need for more
data to learn about the more complex transition matrix.

Although the evidence for the SV-IHMM is robust over the SV-DPM, we acknowledge
that the out-of-sample period is extensive, requiring a significant amount of data to reveal
the gains of the SV-IHMM over the SV-DPM. The key difference in these models lies in the
Markov chain structure governing the states in the SV-IHMM. Finally, differences in RMSFE
are very minor across models.

Some distinctions in the models are visible in Figure 8, which depicts log-predictive den-
sities for various dates. Generally, when necessary, the SV-IHMM can produce thicker tails
than the SV-DPM model.

While the RMSFE and log-predictive likelihood evaluate the center and the entire pre-
dictive distribution, the Taylor scoring rule concentrates on accuracy in the lower tail of the
distribution. The average score, according to (18), is reported in Table 4 and indicates that
the SV-IHMM performs the best for a q of 5%. At the 1% level, the SV-t and TV-GJR-

11We select the top three performing benchmark models in each case according to the log-predictive
likelihood (LPL) of Table 3.
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GARCH-t models outperform for AAPL and Crude Oil, respectively, while the SV-IHMM
remains competitive.12 For IP Growth, GARCH-N is the preferred model at 1%, although
it performs poorly for the other datasets. This scoring rule requires ESq

T+1 < 0, which is
violated for the MMV-K models applied to IP growth.

4.4 Robustness

The hierarchical prior in the SV-IHMM automatically provides some robustness to prior
settings, but the priors on the precision parameters η and α are informative. This is standard
and necessary as it imposes some weak structure on density estimation. Broadly speaking,
these parameters control the number of active states in the model and, as such, govern
parsimony. To explore their impact on the results, we report the posterior estimates for the
full sample and recompute the out-of-sample forecasts for a loose prior for η ∼ Gamma(5, 5)
and α ∼ Gamma(5, 5) and a tight prior for η ∼ Gamma(0.5, 8) and α ∼ Gamma(0.5, 8).

Table 5 compares the results of the two different prior settings. The posterior estimates
of the SV component are very similar over all prior settings, but more states are used on
average for the loose prior, as expected. The loose prior tends to reduce the LPL in the
USD/CAD application while it improves in IP Growth. The tighter prior does not show
significant changes in the LPL with respect to the benchmark prior. For AAPL and Crude
Oil, the alternative priors have a small impact on the LPL and the RMSFE.

Appendix A.1 includes additional results for the top models using looser priors for σ2
ν .

These result in the same ranking of models. Except for IP Growth, the tighter prior results
in larger LPL values.

Evaluations for density forecast accuracy extend beyond predictive likelihoods. We further
employ the probability integral transformation (PIT) of Diebold et al. (1998) to assess the
correctness of the predictive distribution and the asymmetric continuous probability score
(ACPS) of Iacopini et al. (2023) for comparing the accuracy of the predictive distributions
subject to asymmetry.

Diebold et al. (1998) show that the PITs from accurate density forecasts over the out-
of-sample periods are iid uniformly distributed. Table 6 reports the p-values of Komogorov-
Smirnov test for the PIT from each model where the null hypothesis is the PITs are iid draws
from U(0,1). In general, there is no strong evidence to reject iid PITs for the SV-IHMM
while there are a variety of rejections for the other models. TV-GJR-GARCH-t is a strong
competitor, whose KS test does not reject the null hypothesis at 5% level of significance for IP
Growths. While the KS-test does not explicitly rank the models that where null hypothesis

12Similar results are documented using the alternative scoring rule proposed by Patton et al. (2019).
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is not rejected, it serves as a tool for effectively discerning superior models, aligning with the
outcomes of our log predictive likelihoods ranking.

The ACPS penalizes the forecast inaccuracy asymmetrically in left or right tails. The
level of asymmetry c ∈ (0, 1) controls the penalty to different tails. c = 0.5 penalizes both
tails symmetrically. If c < 0.5, an inaccurate left tail suffers from a greater penalty, and if
c > 0.5, an inaccurate right tail suffers from a greater penalty. For each model, we compute
the ACPS at c =0.05, 0.5, 0.95 and report the rankings of average ACPS over the out-of-
sample periods in Table 6.13 SV-IHMM remains competitive and consistent across datasets,
aligning with LPL results, especially for the left tail that refers to the downside risk.

5 Conclusion
This paper introduces a novel Bayesian semiparametric stochastic volatility model with
Markovian mixtures. The model extends the SV-DPM model proposed by Jensen and Maheu
(2010) by allowing the unknown innovation distribution to change over time. The empirical
results underscore the significance of this temporal variation. In summary, the SV-IHMM
consistently outperforms all benchmark models across various evaluation metrics, demon-
strating its superiority in terms of out-of-sample density forecasts and tail forecasts. Impor-
tantly, the robustness of the results is confirmed under different prior settings, highlighting
the reliability of the proposed SV-IHMM. The findings presented in this paper contribute to
the understanding of stochastic volatility modeling, emphasizing the importance of incorpo-
rating time-varying innovation distributions. The SV-IHMM provides a flexible and effective
framework for capturing the evolving dynamics of financial time series data. These results
have implications for researchers and practitioners seeking improved models for volatility
forecasting and risk management.

13See the computation details in Appendix A.3.
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Table 1: Descriptive Statistics

Returns Mean Median StDev Skewness Ex.Kurtosis Min Max
AAPL 0.0711 0.0000 2.9081 -1.7501 46.5407 -73.1248 28.6890
USD/CAD -0.0006 0.0000 0.4087 0.1098 10.1554 -3.8070 5.0716
Crude Oil -0.0117 -0.0213 2.5514 1.8373 69.8919 -41.2023 64.3699
IP Growth 0.2493 0.2800 1.9409 -0.0607 12.8184 -14.6100 15.3219
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Table 2: Posterior Summary of Parameters
Panel A: AAPL

SV-IHMM SV-DPM SV-t GARCH-t
Mean 0.95 DI Mean 0.95 DI Mean 0.95 DI Mean 0.95 DI

µ 0.1188 ( 0.0816, 0.1559) 0.1417 ( 0.1239, 0.1563)
ξ 0.0122 ( 0.0067, 0.0188) β0 0.0260 ( 0.0139, 0.0404)
ϕ 0.9993 (0.9985, 0.9999) 0.9928 (0.9888, 0.9962) 0.9909 ( 0.9864, 0.9947) β2 0.9332 ( 0.9217, 0.9461)
σ2
ν 0.0011 (0.0007, 0.0017) 0.0098 (0.0058, 0.0147) 0.0122 ( 0.0078, 0.0182) β1 0.0394 ( 0.0324, 0.0452)

ν 6.1802 ( 5.5081, 6.9721) 5.2532 ( 4.9630, 5.4631)
α 1.2308 (0.7548, 1.8503)
η 0.9454 (0.4342, 1.6495) 0.4132 (0.1180, 0.8610)
K 10.3052 (8.0000,13.0000) 6.1295 (3.0000,10.0000)

Panel B: USD/CAD
SV-IHMM SV-DPM SV-t GARCH-t

Mean 0.95 DI Mean 0.95 DI Mean 0.95 DI Mean 0.95 DI

µ -0.0001 (-0.0038, 0.0035) -0.0005 (-0.0043, 0.0031)
ξ -0.0127 (-0.0189,-0.0069) β0 0.0001 ( 0.0000, 0.0002)
ϕ 0.9993 (0.9987, 0.9998) 0.9962 (0.9943, 0.9979) 0.9951 ( 0.9929, 0.9971) β2 0.9268 ( 0.9173, 0.9351)
σ2
ν 0.0024 (0.0015, 0.0033) 0.0116 (0.0091, 0.0148) 0.0132 ( 0.0100, 0.0174) β1 0.0542 ( 0.0473, 0.0620)

ν 10.0817 ( 8.2735,12.5834) 6.3324 ( 5.6626, 7.0463)
α 0.6543 (0.3615, 1.0422)
η 1.0455 (0.4979, 1.8023) 0.3647 (0.1060, 0.7685)
K 10.9187 (9.0000,14.0000) 5.3633 (3.0000, 9.0000)

Panel C: Crude Oil
SV-IHMM SV-DPM SV-t GARCH-t

Mean 0.95 DI Mean 0.95 DI Mean 0.95 DI Mean 0.95 DI

µ -0.0594 (-0.0965,-0.0227) -0.0754 (-0.0995,-0.0484)
ξ 0.0148 ( 0.0091, 0.0214) β0 0.0488 ( 0.0337, 0.0657)
ϕ 0.9933 (0.9901, 0.9961) 0.9893 (0.9851, 0.9931) 0.9875 ( 0.9826, 0.9916) β2 0.9068 ( 0.8920, 0.9197)
σ2
ν 0.0098 (0.0066, 0.0137) 0.0164 (0.0120, 0.0214) 0.0182 ( 0.0139, 0.0237) β1 0.0525 ( 0.0448, 0.0622)

ν 8.9162 ( 7.4014,10.9299) 5.1749 ( 4.8852, 5.7158)
α 1.5493 (0.8461, 2.4802)
η 0.5526 (0.1694, 1.2078) 0.4203 (0.1155, 0.9213)
K 5.6379 (4.0000,10.0000) 6.1468 (3.0000,12.0000)

Panel D: IP Growth
SV-IHMM SV-DPM SV-t GARCH-t

Mean 0.95 DI Mean 0.95 DI Mean 0.95 DI Mean 0.95 DI

µ 0.1411 ( 0.0956, 0.1869) 0.1631 ( 0.1183, 0.2040)
ρ 0.4158 ( 0.3576, 0.4734) 0.3973 ( 0.3466, 0.4574)
ξ -0.0098 (-0.0335, 0.0118) β0 0.0521 ( 0.0249, 0.0825)
ϕ 0.9966 (0.9941, 0.9990) 0.9970 (0.9948, 0.9992) 0.9622 ( 0.9354, 0.9866) β2 0.5993 ( 0.4912, 0.7464)
σ2
ν 0.0017 (0.0006, 0.0046) 0.0020 (0.0008, 0.0039) 0.1411 ( 0.0518, 0.2265) β1 0.2400 ( 0.1466, 0.3233)

ν 24.6920 ( 6.1601,48.5491) 4.5288 ( 3.5544, 5.5427)
α 1.2772 (0.7094, 2.1243)
η 0.6872 (0.2446, 1.3464) 0.5785 (0.2191, 1.1131)
K 6.9515 (5.0000,11.0000) 7.6072 (5.0000,11.0000)

Note 1: ρ denotes the parameter of the additional AR(1) term for each model.
Note 2: µ, ρ and ξ are state-dependent parameters for SV-IHMM and SV-DPM.
Note 3: β0, β1 and β2 are the GARCH parameters from (20).
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Table 3: Out-of-Sample Forecast Performance: Density and Point Forecast

AAPL USD/CAD
LPL log BF RMSFE LPL log BF RMSFE

SV-IHMM -19846.89 — 2.8373 -3581.02 — 0.4283
SV-DPM -19893.40 46.50 2.8341 -3616.36 35.34 0.4284
SV-t -19892.58 45.68 2.8345 -3629.96 48.93 0.4284
GARCH-t -19953.12 106.23 2.8347 -3636.74 55.72 0.4284
IHMM -19934.70 87.81 2.8382 -3716.15 135.13 0.4297
SV-N -20037.88 190.99 2.8350 -3688.19 107.17 0.4284
GARCH-N -20542.51 695.62 2.8343 -3914.81 333.79 0.4284
TV-GJR-GARCH-N -20450.90 604.01 2.8340 -3887.56 306.54 0.4284
TV-GJR-GARCH-t -19916.70 79.81 2.8349 -3618.98 37.96 0.4284
MMV-2 -20507.10 660.21 2.8350 -5002.40 1421.38 0.4284
MMV-3 -20240.00 393.11 2.8348 -4392.00 810.98 0.4284
MMV-4 -20187.90 341.01 2.8347 -4867.90 1286.88 0.4284
MMV-5 -20211.60 364.71 2.8348 -4644.30 1063.28 0.4284
MMV-6 -20285.40 438.51 2.8348 -4818.10 1238.08 0.4284
RW -21749.33 1902.44 2.8345 -7023.33 3442.31 0.4284

Crude Oil IP Growth
LPL log BF RMSFE LPL log BF RMSFE

SV-IHMM -16189.88 — 2.6687 -1622.73 — 1.6058
SV-DPM -16213.17 23.29 2.6688 -1641.43 18.69 1.5835
SV-t -16221.76 31.87 2.6690 -1661.11 38.37 1.5823
GARCH-t -16226.84 36.95 2.6689 -1649.76 27.02 1.5808
IHMM -16231.72 41.83 2.6706 -1635.47 12.74 1.5903
SV-N -17019.77 829.88 2.6687 -1662.67 39.94 1.5805
GARCH-N -16492.99 303.10 2.6688 -1791.79 169.06 1.5837
TV-GJR-GARCH-N -16505.70 315.82 2.6689 -1678.70 55.97 1.5764
TV-GJR-GARCH-t -16227.90 38.02 2.6689 -1622.28 -0.45 1.5829
MMV-2 -16648.60 458.72 2.6694 -1772.30 149.57 1.5923
MMV-3 -16525.70 335.82 2.6698 -1727.50 104.77 1.5905
MMV-4 -16432.60 242.72 2.6693 -1720.30 97.57 1.5910
MMV-5 -16418.70 228.82 2.6693 -1715.40 92.67 1.5906
MMV-6 -16459.80 269.92 2.6693 -1705.30 82.57 1.5875
RW -18124.92 1935.04 2.6689 -2229.15 606.42 1.5900

Note 1: The number of out-of-sample observations for AAPL, USD/CAD, Crude Oil and IP Growth are
8823, 10856, 7543 and 1164, respectively.
Note 2: The log Bayes factors are the difference between the log-predictive likelihoods of the SV-IHMM
model and each corresponding model.
Note 3: The higher the LPL and the lower the RMSFE, the better. Bold entries are the highest LPL and
the lowest RMSFE.
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Table 4: Out-of-Sample Forecast Performance: Tail Forecasts

AAPL USD/CAD Crude Oil IP Growth
1% 5% 1% 5% 1% 5% 1% 5%

SV-IHMM 3.219 2.726 1.157 0.801 2.907 2.542 2.513 1.803
SV-DPM 3.248 2.742 1.192 0.814 2.936 2.553 2.561 1.850

SV-t 3.205 2.735 1.172 0.808 2.938 2.557 2.581 1.846
GARCH-t 3.213 2.754 1.165 0.807 2.920 2.552 2.474 1.825

IHMM 3.223 2.739 1.223 0.833 2.923 2.557 2.506 1.830
SV-N 3.239 2.763 1.184 0.820 3.566 2.737 2.568 1.844

GARCH-N 3.255 2.758 1.262 0.814 2.907 2.555 2.473 1.807
TV-GJR-GARCH-N 3.325 2.769 1.199 0.809 2.905 2.560 2.744 1.815
TV-GJR-GARCH-t 3.241 2.756 1.146 0.801 2.917 2.552 2.516 1.767

MMV-2 3.375 2.887 1.404 1.032 3.191 2.698 2.843 —
MMV-3 3.291 2.820 1.309 0.925 3.080 2.661 2.713 —
MMV-4 3.283 2.805 1.358 1.027 3.008 2.619 2.681 —
MMV-5 3.276 2.810 1.384 0.996 3.000 2.614 2.669 —
MMV-6 3.298 2.833 1.340 1.016 3.025 2.630 2.634 —

RW 3.443 3.144 2.483 0.972 3.540 3.014 — —
Note 1: The number of out-of-sample observations for AAPL, USD/CAD, Crude Oil and IP Growth are
8823, 10856, 7543 and 1164, respectively.
Note 2: The entries are computed according to the value-at-risk and the expected shortfall jointly. The lower
the value, the better. Bold entries are for the lowest value in a column.
Note 3: For these with empty values, it indicates positive VaR and ES, which violates the strictly negative
constraint of the scoring rule.

25



Table 5: Robustness: Posterior Estimates and Forecast Performance

AAPL
ϕ σ2

v α η K LPL RMSFE
Loose 0.9989 0.0014 3.3395 1.8419 13.1340 -19843.27 2.8373
Benchmark 0.9993 0.0011 1.2308 0.9454 10.3052 -19846.89 2.8373
Tight 0.9990 0.0011 0.7743 0.8449 10.4248 -19843.70 2.8379

USD/CAD
ϕ σ2

v α η K LPL RMSFE
Loose 0.9994 0.0015 1.2870 2.3436 16.3146 -3591.81 0.4283
Benchmark 0.9993 0.0024 0.6543 1.0455 10.9187 -3581.02 0.4283
Tight 0.9991 0.0023 0.6986 0.7403 9.0708 -3577.30 0.4283

Crude Oil
ϕ σ2

v α η K LPL RMSFE
Loose 0.9932 0.0099 3.6505 1.1750 6.9398 -16190.03 2.6695
Benchmark 0.9933 0.0098 1.5493 0.5526 5.6379 -16189.88 2.6687
Tight 0.9938 0.0081 1.5841 0.3766 5.0579 -16192.12 2.6691

IP Growth
ϕ σ2

v α η K LPL RMSFE
Loose 0.9964 0.0014 2.1213 1.5240 8.8890 -1616.03 1.6060
Benchmark 0.9966 0.0017 1.2772 0.6872 6.9515 -1622.73 1.6058
Tight 0.9964 0.0014 1.0268 0.4840 6.1176 -1624.92 1.6075
Note 1: This table reports posterior mean estimates for ϕ, σ2

v , α, η and K, in addition to out-of-
sample LPL and RMSFE using the same out-of-sample period as before.
Note 2: The loose prior represents Gamma(5, 5); the benchmark prior represents Gamma(2, 8);
and the tight prior represents Gamma(0.5, 8).
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Table 6: Robustness: PIT and ACPS

AAPL USD/CAD

PIT ACPS PIT ACPS
0.05 0.5 0.95 0.05 0.5 0.95

SV-IHMM 0.0778 2 1 1 0.1937 1 1 2
SV-DPM 0.0130 3 2 4 0.1058 3 2 1
SV-t 0.0120 5 3 8 0.0005 5 5 6
GARCH-t 0.0000 11 6 12 0.0096 7 7 7
IHMM 0.0014 1 4 3 0.0362 6 6 5
SV-N 0.0000 4 5 5 0.0011 4 3 4
GARCH-N 0.0000 6 8 6 0.0001 2 4 3
TV-GJR-GARCH-N 0.0000 8 9 7 0.0000 9 8 8
TV-GJR-GARCH-t 0.0583 7 7 2 0.6903 8 9 9
MMV-2 0.0000 14 14 14 0.0000 11 11 14
MMV-3 0.0000 13 13 13 0.0000 15 14 13
MMV-4 0.0000 10 12 11 0.0000 14 12 11
MMV-5 0.0000 9 10 9 0.0000 12 10 10
MMV-6 0.0000 12 11 10 0.0000 13 13 12
RW 0.0000 15 15 15 0.0000 10 15 15

Crude Oil IP Growth

PIT ACPS PIT ACPS
0.05 0.5 0.95 0.05 0.5 0.95

SV-IHMM 0.6866 1 1 3 0.0205 2 1 5
SV-DPM 0.8391 6 2 6 0.0201 4 3 8
SV-t 0.3643 7 4 10 0.0036 7 6 9
GARCH-t 0.3150 8 5 13 0.0000 1 2 1
IHMM 0.2193 2 3 1 0.0000 3 4 6
SV-N 0.3077 13 8 12 0.0002 8 5 7
GARCH-N 0.0000 4 6 4 0.0000 5 7 4
TV-GJR-GARCH-N 0.0000 5 9 5 0.0005 9 9 2
TV-GJR-GARCH-t 0.2734 3 7 2 0.0674 6 8 3
MMV-2 0.0118 14 14 14 0.0000 14 14 14
MMV-3 0.0042 12 13 11 0.0000 12 13 13
MMV-4 0.0171 9 10 7 0.0000 11 12 12
MMV-5 0.0035 11 12 9 0.0000 13 11 11
MMV-6 0.0152 10 11 8 0.0000 10 10 10
RW 0.0000 15 15 15 0.0000 15 15 15

Note 1: The number of out-of-sample observations for AAPL, USD/CAD, Crude Oil and IP Growth are
8823, 10856, 7543 and 1164, respectively.
Note 2: The PIT column shows the p-value for Komogorov-Smirnov test where the null hypothesis is that
the out-of-sample PITs are iid U(0,1). If a model fails to reject the null hypothesis, the density forecasts are
likely to be accurate.
Note 3: The ACPS column shows the rankings of the average ACPS over the out-of-sample periods at
different levels of asymmetry. The top-three rankings are boldfaced.27



Figure 1: AAPL Application: Posterior Mean of Variance Components
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Figure 2: Heat Map for USD/CAD

Note 1: The redder the colour, the higher the probability that two periods sharing the same state.

Figure 3: Heat Map for IP Growth

Note 1: The redder the colour, the higher the probability that two periods sharing the same state.
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Figure 4: State-dependent parameters over time for USD/CAD

Note 1: The black solid line shows the posterior average of the state-dependent parameter and the blue
dotted line shows the corresponding 0.95 DI.
Note 2: The shaded area indicates the most probable state of the period by different colours.
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Figure 5: State-dependent parameters over time for IP Growth

Note 1: The black solid line shows the posterior average of the state-dependent parameter and the blue
dotted line shows the corresponding 0.95 DI.
Note 2: The shaded area indicates the most probable state of the period by different colours.
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Figure 6: Posterior Estimates of Conditional Skewness and Kurtosis
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A Appendix

A.1 Appendix: Robustness Test for Different σ2
ν Priors

Log Predictive Likelihoods for SV-IHMM with Different σ2
ν Priors

AAPL IG(11,0.01) IG(5,0.25) IG(2.5,0.5)
SV-IHMM -19846.89 -19868.08 -19871.51
SV-DPM -19893.40 -19891.52 -19902.91
SV-t -19892.58 -19900.91 -19905.87
SV-N -20037.88 -20038.83 -20042.03
FX
SV-IHMM -3581.02 -3611.51 -3637.44
SV-DPM -3616.36 -3630.36 -3654.82
SV-t -3629.96 -3638.41 -3644.20
SV-N -3688.19 -3691.60 -3694.79
OIL
SV-IHMM -16189.88 -16196.07 -16203.09
SV-DPM -16213.17 -16212.94 -16220.30
SV-t -16221.76 -16224.20 -16227.19
SV-N -17019.77 -17038.88 -16963.99
IP Growth
SV-IHMM -1622.73 -1608.83 -1615.09
SV-DPM -1641.43 -1631.08 -1633.45
SV-t -1661.11 -1652.57 -1651.97
SV-N -1662.67 -1652.25 -1651.96

Note 1: The number of out-of-sample observations for AAPL, USD/CAD, Crude Oil and IP Gr owth are
8823, 10856, 7543 and 1164, respectively.
Note 2: For SV-IHMM and SV-DPM, the SV dynamics follow ht = ϕht−1 + σννt, νt ∼ N(0, 1).
Note 3: For SV-t and SV-N, the SV dynamics follow ht = ξ + ϕht−1 + σννt, νt ∼ N(0, 1).

A.2 Appendix: Probability Integral Transformation

Probability integral transformation (PIT) evaluates the cumulative distribution function
(CDF) instead of probability density function at the out-of-sample realizations. Let Ut be
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such an evaluation at out-of-sample period t+ 1, then

Ut+1 = P (rt+1|r1:t) =
∫ rt+1

−∞
p(u|r1:t)du

=

∫ rt+1

−∞

∫
p(u|Θ, r1:t)p(Θ|r1:t)dΘdu

=

∫ [∫ rt+1

−∞
p(u|Θ, r1:t)du

]
p(Θ|r1:t)dΘ

=

∫
P (rt+1|Θ, r1:t)p(Θ|r1:t)dΘ,

where P (rt+1|Θ, r1:t) is the conditional CDF evaluated at rt+1. With MCMC samples, Ut can
be estimated as

Ut+1 ≈
1

N

N∑
i=1

P (rt+1|Θ(i), r1:t),

where Θ(i) is is a parameter draw from the posterior given data r1:t. Diebold et al. (1998)
showed that if the density forecasts are accurate, Ut

iid∼U(0, 1) for all t in out-of-sample periods.
A Komogorov-Smirnov test is applied to test this null hypothesis. If the test fails to reject
the null hypothesis, it’s likely that the density forecasts are accurate.

A.3 Appendix: Asymmetric Continuous Probability Score

Asymmetric continuous probability score (ACPS) introduced by Iacopini et al. (2023) is
defined in the following way,

ACPS(P, rt+1; c) =

∫ rt+1

−∞

(
c2 − Pt+1(u)

2
)[ 1

(1− c)2
1
(
Pt+1(u) > c

)
+

1

c2
1
(
Pt+1(u) ≤ c

)]
du+∫ ∞

rt+1

(
(1− c)2 −

(
1− Pt+1(u)

)2)[ 1

(1− c)2
1
(
Pt+1(u) > c

)
+

1

c2
1
(
Pt+1(u) ≤ c

)]
du

(28)

The Pt+1(u) is the predictive cumulative distribution function (CDF) evaluated at u. Direct
computation of ACPS is difficult, while a numerical approximation can be applied. Let the
upper and lower limits be rmax and rmin and the number of grids be S, so the size of each
grid is x = 1

S
(rmax − rmin) and the grid points are {rmin, rmin + x, . . . , rmin + (S − 1)x, rmax}.

Iacopini et al. (2023) set rmax = 100, rmin = −100 and S = 500. We use the same upper and
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lower bounds but with much finer grids by setting S = 2000. The ACPS is approximately

ACPS(P, rt+1, c) ≈
rt+1∑

u=rmin+x

x
(
c2 − Pt+1(u)

2
) [ 1

(1− c)2
1 (Pt+1(u) > c) +

1

c2
1 (Pt+1(u))

]
du+

rmax∑
u=rt+1+x

x
(
(1− c)2 − (1− Pt+1(u))

2) [ 1

(1− c)2
1 (Pt+1(u) > c) +

1

c2
1 (Pt+1(u) ≤ c)

]
,

where Pt+1(u) is estimated by

Pt+1(u) =

∫
P (u|Θ, r1:t)p(Θ|r1:T )dΘ

≈ 1

N

N∑
i=1

P (u|Θ(i), r1:t),

where Θ(i) is is a parameter draw from the posterior given data r1:t and P (u|Θ, r1:t) is the
conditional CDF evaluated at u. The ACPS is computed at c =0.05, 0.5, 0.95, respectively
as in Iacopini et al. (2023).

A.4 Appendix: Posterior Sampling Steps for SV-IHMM

1. We sample u1:T |Γ,Π: The auxiliary slice variable U = {ut}Tt=1 is drawn from u1 ∼
U (0, γs1) and ut ∼ U

(
0, πst−1st

)
.

2. We update K. Similar to DPM model, if K does not meet the following condition

min {ut}Tt=1 > max {πjR}Kj=1 (29)

then K needs to be increased by 1 (K ′ = K + 1), and all of the parameters need to be
drawn from the base measure. In addition, since a new “major” state is introduced, Γ
and Π also need to be updated accordingly:

(a) ΘK′ ∼ H;

(b) We draw v ∼ Beta (1, η), then we update Γ = (γ1, . . . , γK , γK′ , γR)
′, where γK′ =

vγR and γR = (1− v) γR;

(c) We draw vj ∼ Beta (αγK′ , αγR), then we update Πj = (πj1, . . . , πjK , πjK′ , πjR) for
j = 1, . . . , K, where πjK′ = vπjR and πjR = (1− v) πjR;

(d) We draw the K ′th row of Π, ΠK′ , by ΠK′ ∼ Dir (αγ1, . . . , αγK , αγK′ , αγR).

The above steps are repeated until inequality (29) holds.
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3. The forward filter for s1:T |r1:T , u1:T ,Γ,Π,Θ, h1:T . Iterating the following steps forward
from 1 to T , we have the following:

(a) The prediction step for initial state s1 is as follows:

p(s1 = k|u1,Γ) ∝ 1 (u1 < γk) , k = 1, . . . , K (30)

for the following states s2:T :

p(st = k|r1:t−1, u1:t,Π,Θ, h1:t−1) ∝
K∑
j=1

1 (ut < πjk) p (st−1 = j|r1:t−1, u1:t−1,Π,Θ, h1:t−1)

(31)

(b) We update the step for s1:T :

p (st = k|r1:t, u1:t,Π,Θ, h1:t) ∝ p (rt|rt−1, θk, ht) p (st = k|r1:t−1, u1:t,Π,Θ, h1:t−1)

(32)

4. The backward sampler for s1:T |r1:T , u1:T ,Π,Θ, h1:T . We sample states s1:T using the
previously filtered values backward from T to 1:

(a) for the terminal state sT , we sample directly from p (sT |r1:T , u1:T ,Π,Θ, h1:T )

(b) for the rest states, we sample from the following,

p (st = k|st+1 = j, r1:t, u1:t+1,Π,Θ, h1:T ) ∝ 1 (ut+1 < πkj) p (st = k|r1:t, u1:t,Π,Θ, h1:T )

(33)

5. Sample c1:K |s1:T ,Γ, α. Following the sampling approach of Fox et al. (2011), we perform
the following:

(a) We count the number of each transition type, njk, number of times state j switches
to state k.

(b) We simulate an auxiliary trail variable xi ∼ Bernoulli
(

αγk
i−1+αγk

)
, for i = 1, . . . , njk.

If the trial is successful, then an “oracle” step is involved at the ith step toward
njk and we increase the corresponding “oracle” counts, ojk, by one.

(c) ck =
∑K

j=1 ojk.

6. Sample η: Following Fox et al. (2011) and Maheu and Yang (2016), we assume a
Gamma prior η ∼ Gamma (a1, b1), and let c =

∑K
j=1 cj,

(a) ν ∼ Bernoulli
(

c
c+η

)
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(b) λ ∼ Beta (η + 1, c)

(c) η ∼ Gamma (a1 +K − ν, b1 − log λ)

7. Sample α: Following Fox et al. (2011), we assume a Gamma prior α ∼ Gamma (a2, b2)

and let nj =
∑K

k=1 njk,

(a) νj ∼ Bernoulli
(

nj

nj+α

)
(b) λj ∼ Beta (α + 1, nj)

(c) α ∼ Gamma
(
a2 + c−

∑K
j=1 νj, b2 −

∑K
j=1 log (λj)

)
8. Sample Γ|c1:K , η: Given the “oracle” counts c1:K and the property of Dirichlet process,

the conjugate posterior is

Γ|c1:K , η ∼ Dir (c1, . . . , cK , η) (34)

9. Sample Π|n1:K,1:K ,Γ, α: Similarly, the conjugate posterior of Πj is

Πj|nj,1:K ,Γ, α ∼ Dir (αγ1 + nj1, . . . , αγK + njK , αγR) (35)

10. Sample Θ|r1:T , s1:T , h1:T . We define Yk ≡
(
e−

1
2
htrt|st = k

)T
t=2

, and Xk ≡
(
e−

1
2
ht |st = k

)T
t=2

.
The linear model is now

Yk = Xkµk + ωkϵk, ϵk ∼ N (0, I) (36)

The posteriors are

p (µk|Yk, ωk) ∼
∏

t:st=k

p (rt|µk, ωk) p (µk) (37)

∼ N (Mµ, Vµ) (38)

where

Mµ = Vµ

(
ω−1
k X ′

kYk +B−1
0 b0

)
(39)

Vµ =
(
ω−1
k X ′

kXk +B−1
0

)−1 (40)
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and

p (ωk|Y,µk) ∝
∏

t:st=k

p (rt|µk, ωk) p (ωk) (41)

∼ IG (v̄, s̄) (42)

where

v̄ =
Tk

2
+ v0 =

1

2

T∑
t=1

1 (st = k) + v0 (43)

s̄ =
1

2
(Yk −Xkµk)

′ (Yk −Xkµk) + s0 (44)

11. Sample hierarchical priors.

(a) Sample b0|µ1:K , B0, h0, H0 ∼ N (µb,Σb), where

µb = Σb

(
B−1

0

K∑
k=1

µk +H−1
0 h0

)
(45)

Σb =
(
KB−1

0 +H−1
0

)−1 (46)

(b) Sample B0|µ1:K , b0, a0, A0 ∼ IW (ΩB, ωb), where

ωb = K + a0 (47)

ΩB =
K∑
k=1

(µk − b0) (µk − b0)
′ + A0 (48)

(c) Sample s0|σ2
1:K , v0, c0, d0 ∼ Gamma (cs, ds), where

cs = Kv0 + c0 (49)

ds =
K∑
k=1

σ−2
k + d0 (50)

(d) Sample v0|σ2
1:K , s0, g0. There IS no easily applicable conjugate prior for v0, so a

Metropolis-Hastings step needs to be applied. We implement a Gamma proposal,
following Maheu and Yang (2016):

v′0|v0 ∼ Gamma

(
τ,

τ

v0

)
(51)
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and the acceptance rate is

min

{
1,

p (v′0|σ2
1:K , s0, g0) /q (v

′
0|v0)

p (v0|σ2
1:K , s0, g0) /q (v0|v′0)

}
(52)

12. θh|h1:T : Equation (1d) is simply a linear regression model. Assuming conjugate prior
β ∼ N (bh, Bh), the posterior is

δ|σv, h1:T ∼ N (M,V ) (53)

M = V

(
σ−2
v

T−1∑
t=1

htht+1 + bhB
−1
h

)
(54)

V =

(
σ−2
v

T−1∑
t=1

h2
t +B−1

h

)−1

(55)

Based on the above linear regression model with conjugate prior σ2
v ∼ IG (vh, sh), the

posterior is

σ2
v |δ, h1:T ∼ IG

(
T

2
+ vh,

∑T−1
t=1 (ht+1 − δht)

2

2
+ sh

)
(56)

13. Sample ht|h−t, r1:T ,Θ, s1:T : We use the block Metropolis-Hastings (MH) sampler as
in Jensen and Maheu (2010) with random block size k = Poisson (λh) + 1. The
proposal density is derived by approximating the autoregressive coefficient to 1. This
approximation provides an analytic inversion of the covariance matrix. We draw h′

(t,τ)

from the following proposal density

g
(
h(t,τ)| · · ·

)
= N

(
h(t,τ);Mh − 0.5Vh (ι− ỹ) , Vh

)
(57)

where

ỹi =
(ri − µsi)

2

ωsi

exp (−Mh,i) (58)

Mh,i =
(k + 1− i)ht−1 + ihτ+1

k + 1
, i = 1, 2, . . . , k (59)

Vh,ij = σ2
v

min (i, j) (1 + k)− ij

k + 1
(60)

V −1
h,ij =


2σ2

v i = j

−σ2
v j = i± 1

0 otherwise

(61)

41



We accept h′
(t,τ) with probability

min

1,
p
(
h′
(t,τ)|r1:T , h−(t,τ),Θ, s1:T

)
/g
(
h′
(t,τ)|h−(t,τ)

)
p
(
h(t,τ)|r1:T , h−(t,τ),Θ, s1:T

)
/g
(
h(t,τ)|h−(t,τ)

)
 (62)

A.5 Appendix: Posterior Sampling for GARCH-N and GARCH-t

Let Θ = {µ, β0, β1, β2, ν} where ν is irrelevant for GARCH-N. We apply a random-walk
MH (RWMH) algorithm to sample the whole Θ vector jointly. A single-move RWMH is
used to compute the proposal covariance and then a block-move RWMH for better sampling
efficiency. A N(0,1) prior is employed for µ, β0, β1 and β2 with restrictions of β0 > 0, β1 > 0,
β2 > 0 and β1 + β2 < 1. The prior for ν is U(2, 50).

A.6 Appendix: Posterior Sampling for TV-GJR-GARCH

We sample Θ = {µ, β0, β1, β2, β3, δ1, γ, c1:2} sampled via single-move RWMH with random
walk, then a block-move RWMH with random is applied to improve the efficiency. gt imposes
a deterministic function of time t in addition to the GARCH persistence. The priors for µ,
β0, β1, β2, β3 are independent N(0, 1) with the same restrictions in GARCH-N. The priors
for δ1, γ, c1:2 are truncated N(0, 1) with restrictions of δ1 > 0, γ > 0 and c1 ≤ c2.

A.7 Appendix: Posterior Sampling for MMV-K

According to Calvet and Fisher (2004), the MMV-K model can be written as a restricted
version of Markov-switching model. Given K and two choices for each multiplier (α and
2 − α), there are total of d = 2K combinations. If we let each combination be a particular
state, then each state corresponds to a sequence of K multipliers with each multiplier being
either α or 2− α. Alternatively, let mi ∈ {m1, . . . ,md} represent one sequence combination
where mi ∈ R

K
+ for i = 1, . . . , d. By definitions, there is a substantial number of combinations

such that mi ̸= mj for i ̸= j but
∏K

k=1 m
k
i =

∏K
k=1 m

k
j , where mk

i is the kth element in the
combination vector mi for state i. Apparently, σt will be the same for these combinations.
In short, we may have a large number of unique combination sequences but most of them
result in the same σt.

According to Calvet and Fisher (2004) suggested, the corresponding Markov transition
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probability becomes the following given that γ2:K is a deterministic function of b and γ1,

πij =
K∏
k=1

{
(1− γk)1(m

k
i = mk

j ) + 0.5γk
}
, i, j ∈ (1, . . . , d)

where πij represent the probability of moving from state i to j. With the Markov transition
probability matrix and corresponding state variable σt ∈ {

∏K
k=1 m

k
1, . . . ,

∏K
k=1 m

k
d}, we could

generate a large Markov-switching model with dimension of d = 2K . The latent state variable
can be sampled via the Forward-filtering Backward-sampling (FFBS) by Chib (1996). Con-
ditioned on the sampled latent states, γ1 and b are jointly sampled via RWMH. This can be
computationally expensive as a new path of the state variable σ1:t need to be sampled during
the MH whenever new γ1 and b are generated from the proposal distribution. Conditioned
on σ1:t, γ1 and b, parameters µ and ω are sampled via conjugate Gibbs.
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